Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 45(8): 1211-1224, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35648597

RESUMO

Although a number of genetically diverse Yersinia ruckeri strains are present in Norwegian aquaculture environments, most if not all outbreaks of yersiniosis in Atlantic salmon in Norway are associated with a single specific genetic lineage of serotype O1, termed clonal complex 1. To investigate the presence and spread of virulent and putatively avirulent strains in Norwegian salmon farms, PCR assays specific for Y. ruckeri (species level) and Y. ruckeri clonal complex 1 were developed. Following extensive screening of water and biofilm, the widespread prevalence of putatively avirulent Y. ruckeri strains was confirmed in freshwater salmon hatcheries, while Y. ruckeri clonal complex 1 was found in fewer farms. The formalin-killed bacterin yersiniosis vaccine was detected in environmental samples by both PCR assays for several weeks post-vaccination. It is thus important to interpret results from recently vaccinated fish with great care. Moreover, field studies and laboratory trials confirmed that stressful management procedures may result in increased shedding of Y. ruckeri by sub-clinically infected fish. Analysis of sea water sampled throughout thermal delousing procedures proved effective for detection of Y. ruckeri in sub-clinically infected populations.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Salmo salar , Yersiniose , Animais , Aquicultura , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/prevenção & controle , Oncorhynchus mykiss/genética , Reação em Cadeia da Polimerase em Tempo Real , Salmo salar/genética , Yersiniose/epidemiologia , Yersiniose/prevenção & controle , Yersiniose/veterinária , Yersinia ruckeri/genética
2.
J Fish Dis ; 45(1): 153-163, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34719037

RESUMO

Lumpfish is a novel farmed species used as cleaner fish for the removal of lice from farmed salmon. As often with new, farmed species, there are challenges with bacterial infections. The frequency of prescription of antibiotic agents to lumpfish is increasing, despite the lack of knowledge about appropriate doses, duration of treatment and application protocols for the various antibacterial agents. In the current study, we have tested the effect of medicated feed with florfenicol (FFC), oxolinic acid (OA) and flumequine (FLU) on lumpfish experimentally challenged with Vibrio anguillarum, atypical Aeromonas salmonicida and Pasteurella atlantica. We found that all three antibacterial agents efficiently treated lumpfish with vibriosis using 10 and 20 mg kg-1  day-1 of FFC, 25 mg kg-1  day-1 of OA and 25 mg kg-1  day-1 FLU, whereas only FFC (20 mg kg-1  day-1 ) had good effect on lumpfish with pasteurellosis. None of the antibacterial agents were efficient to treat lumpfish with atypical furunculosis. FFC 20 mg kg-1  day-1 showed promising results in the beginning of the experiment, but the mortality increased rapidly 14 days post-medication. Efficient treatment is important for the welfare of lumpfish and for reducing the risk of development of antibiotic-resistant bacteria. To our knowledge, this is the first study to establish protocols for antibacterial treatment of lumpfish.


Assuntos
Aeromonas salmonicida , Doenças dos Peixes , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doenças dos Peixes/tratamento farmacológico , Pasteurella , Vibrio
3.
Ecotoxicol Environ Saf ; 223: 112585, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34365212

RESUMO

The fish acute toxicity test (TG203; OECD, 2019) is frequently used and highly embedded in hazard and risk assessment globally. The test estimates the concentration of a chemical that kills 50% of the fish (LC50) over a 96 h exposure and is considered one of the most severe scientific procedures undertaken. Over the years, discussions at the Organisation for Economic Co-operation and Development (OECD) have resulted in changes to the test which reduce the number of fish used, as well as the development of a (potential) replacement test (TG236, OECD, 2013). However, refinement of the mortality endpoint with an earlier (moribundity) endpoint was not considered feasible during the Test Guideline's (TG) last update in 2019. Several stakeholders met at a UK-based workshop to discuss how TG203 can be refined, and identified two key opportunities to reduce fish suffering: (1) application of clinical signs that predict mortality and (2) shortening the test duration. However, several aspects need to be addressed before these refinements can be adopted. TG203 has required recording of major categories of sublethal clinical signs since its conception, with the option to record more detailed signs introduced in the 2019 update. However, in the absence of guidance, differences in identification, recording and reporting of clinical signs between technicians and laboratories is likely to have generated piecemeal data of varying quality. Harmonisation of reporting templates, and training in clinical sign recognition and recording are needed to standardise clinical sign data. This is critical to enable robust data-driven detection of clinical signs that predict mortality. Discussions suggested that the 96 h duration of TG203 cannot stand up to scientific scrutiny. Feedback and data from UK contract research organisations (CROs) conducting the test were that a substantial proportion of mortalities occur in the first 24 h. Refinement of TG203 by shortening the test duration would reduce suffering (and test failure rate) but requires a mechanism to correct new results to previous 96 h LC50 data. The actions needed to implement both refinement opportunities are summarised here within a roadmap. A shift in regulatory assessment, where the 96 h LC50 is a familiar base for decisions, will also be critical.


Assuntos
Peixes , Organização para a Cooperação e Desenvolvimento Econômico , Animais , Humanos , Dose Letal Mediana , Medição de Risco , Testes de Toxicidade Aguda
4.
Microorganisms ; 9(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199775

RESUMO

Pasteurellosis in farmed lumpsuckers, Cyclopterus lumpus, has emerged as a serious disease in Norwegian aquaculture in recent years. Genomic characterization of the causative agent is essential in understanding the biology of the bacteria involved and in devising an efficient preventive strategy. The genomes of two clinical Pasteurella atlantica isolates were sequenced (≈2.3 Mbp), and phylogenetic analysis confirmed their position as a novel species within the Pasteurellaceae. In silico analyses revealed 11 genomic islands and 5 prophages, highlighting the potential of mobile elements as driving forces in the evolution of this species. The previously documented pathogenicity of P. atlantica is strongly supported by the current study, and 17 target genes were recognized as putative primary drivers of pathogenicity. The expression level of a predicted vaccine target, an uncharacterized adhesin protein, was significantly increased in both broth culture and following the exposure of P. atlantica to lumpsucker head kidney leucocytes. Based on in silico and functional analyses, the strongest gene target candidates will be prioritized in future vaccine development efforts to prevent future pasteurellosis outbreaks.

5.
J Fish Dis ; 44(8): 1201-1214, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33960425

RESUMO

The use of cleaner fish as a delousing method in Norwegian salmonid aquaculture has increased tremendously over the last few years. This has led to the emergence of a new large industry of farming lumpsuckers (Cyclopterus lumpus L.). The use of lumpsuckers as cleaner fish has, however, not been problem-free. Bacterial diseases cause high mortalities with pasteurellosis as one of the major emerging diseases. During the past few years, outbreaks of pasteurellosis in farmed Atlantic salmon (Salmo salar L.) have become more frequent. This has led to an increasing concern that this disease will become common in salmon farming as well. The purpose of this study was to investigate the susceptibility of Atlantic salmon to Pasteurella spp. infection and the possibility of lumpsuckers transmitting pasteurellosis to Atlantic salmon. Atlantic salmon were experimentally challenged, either by bath or by cohabitation with challenged lumpsuckers, using two different strains of Pasteurella spp. (originating from lumpsucker and Atlantic salmon, respectively). No clinical signs of pasteurellosis were observed on any of the Atlantic salmon. The lumpsuckers were, however, equally susceptible to both isolates. In addition, clear differences in histopathological changes were observed between individuals challenged with the two isolates.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Pasteurella/veterinária , Pasteurella/fisiologia , Perciformes , Salmo salar , Animais , Aquicultura , Noruega , Infecções por Pasteurella/microbiologia
6.
Fish Shellfish Immunol ; 95: 650-658, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31706007

RESUMO

Two monovalent vaccines against pasteurellosis were developed and tested for efficacy using a previously established bath challenge model. High levels of specific antibodies were detected following vaccination. While the vaccine efficacy trial indicated that some level of protection was obtained, high mortality was still observed. qPCR analysis of head kidney tissues from surviving fish post challenge showed no difference in bacterial numbers in vaccinated and non-vaccinated fish. Clinical symptoms observed in moribund and diseased fish included white spots on the skin and around the eyes, frayed fins and redness around the mouth and fin bases. Despite production of specific antibodies, the protection against experimental challenge was relatively weak. A reason for this could potentially be that the specific antibodies produced are not alone enough to provide complete protection against pasteurellosis in lumpsuckers. Confocal and scanning electron microscopy of head kidney leucocytes exposed to Pasteurella sp. in vitro gave indications of the interactions between the pathogen and leucocytes. The results indicate that parts of the immune system other than humoral antibodies could be important for protection against pasteurellosis. Our combined results highlight the need for further work on host-pathogen interaction between Pasteurella sp. and lumpsuckers.


Assuntos
Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/imunologia , Doenças dos Peixes/imunologia , Infecções por Pasteurella/veterinária , Perciformes/imunologia , Imunidade Adaptativa , Animais , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Rim Cefálico/imunologia , Rim Cefálico/microbiologia , Pasteurella , Infecções por Pasteurella/prevenção & controle , Perciformes/microbiologia , Vacinação
7.
J Fish Dis ; 42(1): 35-46, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30311669

RESUMO

The incidence of disease caused by Pasteurella sp. in farmed lumpsuckers in Norway has been steadily increasing in recent years, causing significant economic losses and fish welfare issues. The disease affects all life stages, both in hatcheries and after release into salmon cages. Therefore, it is important to establish robust challenge models, to be used for vaccine development. Exposure experiments via intramuscular and intraperitoneal injection underlined the high virulence of the bacteria, whereas the cohabitation and bath models allowed the chronic symptoms of the disease to be studied more accurately. Skin lesions and haemorrhage at the base of fins were observed in the more acute cases of the disease. Symptoms including white spots over the skin, especially around the eyes, characterized the chronic cases. The latter were most prominent from the bath challenge model. Histopathology indicated a systemic pattern of disease, whereas qPCR analysis from head kidney showed that bacteria may be present in survivor fish at the end of the challenges. In all the challenge models investigated, Pasteurella sp. was re-isolated from the fish, thus fulfilling Koch's postulates. These findings highlight the importance of screening of lumpsuckers prior to transfer to minimize the risks of carrying over asymptomatic carriers.


Assuntos
Doenças dos Peixes/patologia , Infecções por Pasteurella/veterinária , Pasteurella/patogenicidade , Perciformes , Virulência , Animais , Doenças dos Peixes/mortalidade , Doenças dos Peixes/transmissão , Rim Cefálico/microbiologia , Pasteurella/genética , Pasteurella/crescimento & desenvolvimento , Pasteurella/isolamento & purificação , Infecções por Pasteurella/mortalidade , Infecções por Pasteurella/patologia , Infecções por Pasteurella/transmissão , RNA Ribossômico 16S/análise
8.
Antibiotics (Basel) ; 7(2)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772736

RESUMO

The aquaculture industry is suffering from losses associated with bacterial infections by opportunistic pathogens. Vibrio anguillarum is one of the most important pathogens, causing vibriosis in fish and shellfish cultures leading to high mortalities and economic losses. Bacterial resistance to antibiotics and inefficient vaccination at the larval stage of fish emphasizes the need for novel approaches, and phage therapy for controlling Vibrio pathogens has gained interest in the past few years. In this study, we examined the potential of the broad-host-range phage KVP40 to control four different V. anguillarum strains in Atlantic cod (Gadus morhua L.) and turbot (Scophthalmus maximus L.) larvae. We examined larval mortality and abundance of bacteria and phages. Phage KVP40 was able to reduce and/or delay the mortality of the cod and turbot larvae challenged with V. anguillarum. However, growth of other pathogenic bacteria naturally occurring on the fish eggs prior to our experiment caused mortality of the larvae in the unchallenged control groups. Interestingly, the broad-spectrum phage KVP40 was able to reduce mortality in these groups, compared to the nonchallenge control groups not treated with phage KVP40, demonstrating that the phage could also reduce mortality imposed by the background population of pathogens. Overall, phage-mediated reduction in mortality of cod and turbot larvae in experimental challenge assays with V. anguillarum pathogens suggested that application of broad-host-range phages can reduce Vibrio-induced mortality in turbot and cod larvae, emphasizing that phage therapy is a promising alternative to traditional treatment of vibriosis in marine aquaculture.

9.
Sci Rep ; 8(1): 5261, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29588496

RESUMO

We performed RNA sequencing, identified components of the immune system and mapped early immune responses of lumpfish (Cyclopterus lumpus) leukocytes following in vitro exposure to the pathogenic bacterium Vibrio anguillarum O1. This is the first characterization of immune molecules in lumpfish at the gene level. In silico analyses revealed that genes encoding proteins involved in pathogen recognition, cell signaling and cytokines in mammals and teleosts are conserved in lumpfish. Unique molecules were also identified. Pathogen recognition components include 13 TLRs, several NLRs and complement factors. Transcriptome-wide analyses of immune responses 6 and 24 hours post bacterial exposure revealed differential expression of 9033 and 15225 genes, respectively. These included TLR5S, IL-1ß, IL-8, IL-6, TNFα, IL-17A/F3, IL-17C and several components of the complement system. The data generated will be valuable for comparative studies and make an important basis for further functional analyses of immune and pathogenicity mechanisms. Such knowledge is also important for design of immunoprophylactic measures in lumpfish, a species of fish now farmed intensively for use as cleaner-fish in Atlantic salmon (Salmo salar) aquaculture.


Assuntos
Infecções Bacterianas/veterinária , Doenças dos Peixes/genética , Perciformes/genética , Transcriptoma , Animais , Aquicultura , Bactérias/imunologia , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Sequência de Bases , Ativação do Complemento , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Regulação da Expressão Gênica , Imunidade Inata , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/microbiologia , Perciformes/imunologia , Perciformes/microbiologia
10.
Dis Aquat Organ ; 125(3): 189-197, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792417

RESUMO

So-called 'cleaner fish', including various wrasse (Labridae) species, have become increasingly popular in Norwegian salmon farming in recent years for biocontrol of the salmon louse Lepeophtheirus salmonis. Cleaner fish mortalities in salmon farms are, however, often high. Various bacterial agents are frequently associated with episodes of increased cleaner fish mortality, and Vibrio tapetis is regularly cultured from diseased wrasse. In the present study, we investigated the genetic relationships among 54 V. tapetis isolates (34 from wrasse species) by multilocus sequence analysis (MLSA; rpoD, ftsZ, pyrH, rpoA and atpA). In the resulting phylogenetic tree, all wrasse isolates belonged to sub-clusters within V. tapetis subsp. tapetis. Slide agglutination testing further confirmed the complete dominance amongst these isolates of 4 O-antigen serotypes, designated here as V. tapetis subsp. tapetis serotypes O1, O3, O4 and O5, respectively. A pilot challenge trial using serotypes O3, O4 and O5 did not indicate high pathogenicity towards ballan wrasse Labrus bergylta, thus questioning the role of V. tapetis as a primary pathogen of this fish species.


Assuntos
Agentes de Controle Biológico , Copépodes/microbiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Vibrio/genética , Vibrio/isolamento & purificação , Animais , Ectoparasitoses/prevenção & controle , Doenças dos Peixes/prevenção & controle , Peixes , Filogenia , Projetos Piloto
11.
Fish Shellfish Immunol ; 64: 383-391, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28344167

RESUMO

Atypical Aeromonas salmonicida is frequently associated with disease and mortality in farmed lumpfish (Cyclopterus lumpus L). Challenge experiments using different modes of exposure identified both high and low pathogenic isolates. Intraperitoneal vaccination induced production of high levels of specific antibodies particularly in fish given multiple injections. The immune sera contained antibodies cross reactive with both high and low pathogenic isolates. SDS-PAGE and LC/MSMS analyses showed that the highly virulent isolate expressed the virulence array protein (A-layer) while the less virulent isolate did not. Vaccines, containing the highly virulent isolate, formulated as a monovalent or as a trivalent vaccine, provided 73 and 60 relative percent survival (RPS) respectively, following intraperitoneal challenge. The detection of high levels of specific antibodies in immune sera and the protection provided by the test vaccines strongly indicate that it is possible to vaccinate lumpfish against atypical A. salmonicida and most probably also against other infectious bacterial diseases.


Assuntos
Aeromonas salmonicida/imunologia , Aeromonas salmonicida/patogenicidade , Vacinas Bacterianas/imunologia , Doenças dos Peixes/prevenção & controle , Peixes , Infecções por Bactérias Gram-Negativas/veterinária , Vacinação/veterinária , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Injeções Intraperitoneais/veterinária , Virulência
12.
Dev Comp Immunol ; 52(2): 132-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26021455

RESUMO

The innate immune responses in lumpfish (Cyclopterus lumpus L.) have been shown to be functional, but little is currently known about the B cells, immunoglobulins or adaptive immune responses in this species. We have used anti-IgM antiserum to isolate B cells and compared them morphologically and functionally with other cell types. The fraction of IgM(+) cells among isolated peripheral blood leukocytes (PBL), head kidney leukocytes (HKL) and spleen leukocytes (SL) was in the range of 40%, 12% and 34%, respectively. The IgM(+) B cells had high phagocytic ability and were the predominant phagocytes in blood with higher capacity than IgM(+) B cells in HKL. Interestingly, among PBL, the most potent phagocytes were, in addition to monocytes, some small agranular uncharacterized IgM(-) cells. The IgM(+) B cells were positive for acid phosphatases (AcP), but negative for myeloperoxidase (MPO). Neutrophils were positive for MPO, while monocytes/macrophages and dendritic-like cells stained negatively. Monocytes/macrophages and the small, agranular IgM(-) cells stained most strongly positive for AcP corresponding to their high phagocytic capacity. Further, the ability to produce specific antibodies upon immunization verified adaptive immunity in the species. The high proportion of phagocytic IgM(+) B cells and their phagocytic ability indicate a significant role of phagocytic B cells in lumpfish innate immunity. The present analyses also give strong indications that vaccination and immunostimulation of farmed lumpfish can be used to prevent disease and mortality caused by pathogenic organisms.


Assuntos
Imunidade Adaptativa , Linfócitos B/fisiologia , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Imunoglobulina M/metabolismo , Perciformes/imunologia , Aeromonas salmonicida/imunologia , Animais , Formação de Anticorpos , Linfócitos B/ultraestrutura , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Fagocitose , Vibrio/imunologia
13.
Fish Shellfish Immunol ; 39(1): 51-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24798992

RESUMO

We have isolated leucocytes from peripheral blood (PBL), head kidney (HKL) and spleen (SL) of wrasse (Labrus bergylta A.) and studied the innate immune responses phagocytosis and respiratory burst using flow cytometry. Further, we have characterized the phenotypic properties of the leucocytes by cytochemical staining. We could differentiate between several subsets of leucocytes; lymphocytes, monocytes/macrophages, neutrophils, eosinophils, basophils and small leucocytes that might be precursor or immature cells. One striking observation was the eosinophils which were present among HKL, PBL and SL. The neutrophils had rounded, bean shaped or bi-lobed nuclei and resembled neutrophils in Atlantic cod (Gadus morhua L.) and lumpsucker (Cyclopterus lumpus L.), but were different from the polymorphonucleated neutrophils in Atlantic salmon (Salmo salar L.) and humans. Basophils were observed, but they were rare. Phagocytosis and respiratory burst activities were detected among different cell types. Highest phagocytic activity was observed among monocytes/macrophages and small leucocytes. Several different subtypes had ability to perform an oxygen-dependent degradation of microbes, measured as respiratory burst activity. Knowledge of the basic properties of wrasse's leucocytes and innate immunology can benefit further studies on its adaptive immune responses.


Assuntos
Imunidade Inata , Leucócitos/citologia , Leucócitos/imunologia , Perciformes/imunologia , Fagocitose , Explosão Respiratória , Animais , Citometria de Fluxo/veterinária , Rim Cefálico/citologia , Rim Cefálico/imunologia , Microscopia de Fluorescência/veterinária , Baço/citologia , Baço/imunologia
14.
Dis Aquat Organ ; 108(1): 11-21, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24492050

RESUMO

The granuloma disease caused by Francisella noatunensis subsp. noatunensis in farmed Atlantic cod has not been successfully treated by use of antibacterials, even when antibacterial resistance testing indicates a sufficient effect. The reason for this treatment failure may be the intracellular existence of the bacteria within immune cells, mainly macrophages. To investigate the effect of antibacterials on intracellular Francisella replication, we established a protocol for the detection of drugs within Atlantic cod immune cells using high-performance liquid chromatography (HPLC). When the uptake and intracellular concentrations of oxolinic acid and flumequine were analysed in isolated adherent head kidney leucocytes (HKLs) by HPLC, we found that uptake was rapid and the intracellular concentrations reflected the extracellular exposure concentrations. To investigate the effect of the antibacterial compounds on intracellular bacterial replication, adherent HKLs experimentally infected with the bacteria were analysed using flow cytometry and intracellular labelling of bacteria by specific antibodies. We found that flumequine did not inhibit intracellular bacterial replication. Unexpectedly, the results indicated that the intracellularly effiacy of the drug was reduced. The HPLC method used proved to be highly applicable for accurate determination of intracellular drug concentrations. When combined with sensitive and specific flow cytometry analyses for identification and measurement of intracellular bacterial replication, we suggest that this approach can be very valuable for the design of antibacterial treatments of intracellular pathogens.


Assuntos
Fluoroquinolonas/metabolismo , Francisella/fisiologia , Gadus morhua , Leucócitos/metabolismo , Ácido Oxolínico/metabolismo , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Fluoroquinolonas/farmacologia , Ácido Oxolínico/farmacologia
15.
Fish Shellfish Immunol ; 35(3): 725-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23765119

RESUMO

Francisella noatunensis subsp. noatunensis, causing granulomatosis in cod, has been shown to reside within cod immune cells, mainly within monocytes and macrophages. In the present study, we analysed the ability of the bacterium to replicate within adherent cells isolated from head kidney by in vitro infection of leucocytes. Two different technical approaches for flow cytometry analyses were performed for detection of intracellular bacteria. The presence of the wild type was assessed after identification by intracellular binding of specific antibodies to the pathogen. The other way was to use green fluorescent protein (GFP) transformed bacterium for infection studies allowing direct measurements of fluorescence from infected cells. By both methods we found an increase in fluorescence in infected cells, verifying bacterial replication, both after 4 and 28 h post infection in leucocytes isolated from head kidney (HKL). The GFP transformed bacterium was similar to the wild type in growth and infectivity pattern, showing that it can be a valuable tool for further studies of infection routes and pathology. Further, F. noatunensis subsp. noatunensis was found to inhibit respiratory burst activity, a potent pathogen killing mechanism, in cod leucocytes, but not in such cells from salmon. Our findings may indicate that inhibition of respiratory burst during Francisella infection is a key to its intracellular existence. This strategy seems to be conserved through evolution as it is also observed during infections in higher vertebrates caused by bacteria within the Francisella genus. The results presented here, showing the intracellular existence of Francisella, its replication within leucocytes and the inhibitory effect on respiratory burst, strongly support that these factors contribute to disease and pathology in infected cod. The intracellular replication shown in the present study might contribute to explain the problems of obtaining protective vaccines against Francisella and effective antibiotic treatment of infected fish.


Assuntos
Francisella/citologia , Francisella/fisiologia , Gadus morhua , Leucócitos/microbiologia , Explosão Respiratória/fisiologia , Animais , Células Cultivadas , Salmo salar
16.
Fish Shellfish Immunol ; 34(5): 1294-305, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23458707

RESUMO

In the present study, intracellular infectious pancreatic necrosis virus (IPNV) in salmon leucocytes was detected by flow cytometry after experimental cohabitant challenge. IPNV vaccinated, non-vaccinated and intraperitoneally (i.p.) infected salmon (virus shedders) were analysed at different times throughout the period when mortality occurred. Fish that had survived 61 days post challenge (carriers) were also analysed. In particular, we analysed the presence of IPNV in B-cells (C7G7+cells) and in neutrophils (E3D9+ cells) in head kidney leucocytes (HKL) and in peripheral blood leucocytes (PBL). IPNV was present in HKL and PBL from all challenged fish groups at all samplings, including carriers. IPNV was also found intracellular in other leucocytes than B-cells and neutrophils. During the time course of infection there were changes in proportion of B-cells and neutrophils and in proportions of IPNV+ cells. In vaccinated fish, a delay in the changes observed in the proportion of IPNV+ cells and in the proportions of the two subpopulations was identified. The vaccinated fish were protected against disease as no fish died compared to 30.8% of non-vaccinated cohabitant fish. All i.p. infected fish, except one, survived the challenge. This is consistent with previous studies and confirmed that the routes of infection can influence mortality. The analyses in this study could not identify any factors enlightening this absence of mortality in i.p. infected fish, but both flow cytometry and qRT-PCR showed that i.p. infected fish were carriers of IPNV. The present study also found that IPNV was present in both B-cells and neutrophils as well as in other leucocytes in all carriers after cohabitant challenge. These fish had survived 9 weeks post challenge and 4 weeks after mortality has ceased. The fish harbouring virus within their leucocytes might become life long carriers and represent a risk for disease outbreaks, being virus shedders. Such fish are protected from later infections if the virus exposure has resulted in protective immunity. Flow cytometry was found to be very suitable for detection of intracellular virus after in vivo challenge and the sensitivity was demonstrated by the detection of virus in carriers.


Assuntos
Infecções por Birnaviridae/veterinária , Doenças dos Peixes/virologia , Vírus da Necrose Pancreática Infecciosa/isolamento & purificação , Leucócitos/virologia , Salmo salar , Animais , Infecções por Birnaviridae/virologia , Citometria de Fluxo/veterinária , Rim Cefálico/virologia , Contagem de Leucócitos/veterinária , Microscopia de Fluorescência/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária
17.
Fish Shellfish Immunol ; 33(6): 1292-302, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23032441

RESUMO

Infectious Pancreatic Necrosis virus (IPNV) is traditionally detected in adherent leucocytes using immunofluorescence labelled specific antibodies, PCR or by further cultivation of infected cell material in cell lines. We present a flow cytometry (FCM) assay for detection of intracellular IPNV in salmon leucocytes, where each single cell is analysed for presence of virus. The method is established using in vitro challenge of salmon leucocytes and CHSE-214 cells. For detection of intracellular virus antigen the Cytofix/Cytoperm kit from BD is optimal compared with paraformaldehyde or acetone/methanol for cell permeabilisation. This is combined with labelling procedures allowing both internal virus antigen labelling and external antibody labelling of cell markers to identify B-cells and neutrophils. The secondary antibodies were Alexa Fluor 647 for the internal labelling and RPE for the external labelling of bound cell subtype specific antibodies. The presences of virus within cells are also demonstrated by confocal and light microscopy of infected cells. IPNV is successfully detected in blood and head kidney leucocyte samples. IPNV is found both in B-cells and neutrophils as well as in other types of leucocytes that could not be identified due to lack of cell-specific antibodies. Serial samples from cultivation of in vitro infected leucocytes and CHSE-214 cells analysed by flow cytometry showed that number of infected cells increased with increasing number of days. The flow cytometry protocol for detection of intracellular IPNV is verified using CHSE-214 cells persistently infected with IPNV. These analyses are compared with virus titre and virus infected naive CHSE-214 cells. The detection of IPNV in persistently infected cells indicates that carrier fish can be analysed, as such cells are considered to have virus titres similar to carriers.


Assuntos
Infecções por Birnaviridae/veterinária , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/virologia , Citometria de Fluxo/métodos , Vírus da Necrose Pancreática Infecciosa , Leucócitos/virologia , Salmo salar , Animais , Infecções por Birnaviridae/induzido quimicamente , Citometria de Fluxo/veterinária , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica/veterinária , Microscopia Confocal/veterinária
18.
Fish Shellfish Immunol ; 33(1): 60-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22538351

RESUMO

Sterile triploid fish are being used in aquaculture to prevent early unwanted sexual maturation and the genetic interaction between wild and cultured fish; however, triploid fish are typically considered to be more susceptible to disease than diploid counterparts. Proportions of leucocytes from the head kidney and peripheral blood were identified using monoclonal antibodies and flow cytometry in triploid and diploid, vaccinated and unvaccinated, out-of-season (0+) and 1+ Atlantic salmon (Salmo salar L.) three weeks post seawater transfer. Triploid 1+ fish were significantly (P<0.05) heavier than diploid fish at the time of sampling, whereas triploid 0+ had a significantly lower condition factor than diploids. Ploidy had a significant effect on the proportion of B-cells in the blood of both 0+ and 1+ fish, and the head kidney of 1+ fish, with triploids having lower proportions of B-cells to diploids in both smolt groups. In addition, a significant ploidy×vaccination interaction effect was observed in the response of neutrophils in the blood (vaccinated diploids had a higher mean proportion than diploid unvaccinated) and B-cells in the head kidney (in vaccinated fish, triploids had a lower mean proportion than diploids) in 0+ smolts. Vaccination was found to significantly increase the proportion of B-cells in the head kidney of 1+ smolts in both ploidy. Size (fish weight) was positively correlated with neutrophil proportions in 1+ fish. Our findings are discussed in relation to the physiological differences related to ploidy. The results suggest that ploidy as well as smelting regime influences the immune system of Atlantic salmon post-smolts.


Assuntos
Linfócitos B/citologia , Peso Corporal/genética , Rim Cefálico/citologia , Neutrófilos/citologia , Salmo salar/fisiologia , Triploidia , Vacinação/veterinária , Animais , Diploide , Contagem de Leucócitos , Salmo salar/genética , Salmo salar/imunologia
19.
J Immunol Methods ; 362(1-2): 10-21, 2010 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-20674576

RESUMO

Different salmon leucocyte subpopulations were identified by immunostaining using rabbit antiserum raised against the salmonid cell line TO derived from head kidney leucocytes in combination with other available immunoglobulins. The rabbit anti-TO cell line serum immunostained all isolated leucocytes from head kidney, peripheral blood and spleen, as shown by analyses of these leucocytes by flow cytometry and by fluorescence microscopy. In cytospin preparations, the staining of salmon leucocytes using rabbit anti-TO serum as the primary antibody revealed greater morphological details compared to conventional staining procedures, especially among isolated spleen leucocytes where cells with a morphology usually limited to dendritic cells were seen. Other cells of various shapes and protrusions were also stained although the anti-TO serum did not stain protrusions on all cell types. Among the immunoglobulin positive cells, the thin protrusions were only seen when immunostained using anti-IgM antibody. The same was observed for neutrophils stained using the monoclonal E3D9 antibody. The double staining of cells using rabbit anti-TO serum and monoclonal antibodies specific for IgM positive cells or neutrophils clearly show how the morphology of these cells can be compared with the rest of the leucocyte population. The staining of salmon leucocytes by antiserum to a salmon leucocyte cell line TO provides a tool for staining the total population of salmon immune cells, and can be used in immunofluorescence or confocal microscopy in combinations with labelling of cellular components or pathogens. The detailed morphological characteristics, such as cell protrusions, visualized by the presented staining have not been observed on fish leucocytes by conventional cell staining procedures.


Assuntos
Anticorpos Monoclonais/química , Citometria de Fluxo/métodos , Neutrófilos/metabolismo , Salmo salar/sangue , Animais , Linhagem Celular , Imunofluorescência/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Neutrófilos/imunologia , Coelhos , Salmo salar/imunologia
20.
Fish Shellfish Immunol ; 28(1): 193-204, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19874896

RESUMO

Phagocytosis by fish cells has mostly been studied using adherent leucocytes, excluding suspended cells such as the majority of B-cells and neutrophils, but a recent study describes professional phagocytosis of latex beads and bacteria by B-cells from rainbow trout. In the present study, phagocytosis by B-cells and neutrophils from salmon and cod was studied. Leucocytes were isolated from peripheral blood (PBL) and head kidney (HKL). By flow cytometry analyses, proportions of MAb labelled cell populations with internalized fluorescent beads, as well as the number of beads within each cell, could be determined. Phagocytic capacity and ability were demonstrated in B-cells and neutrophils from salmon and cod. In salmon, B-cells had higher phagocytic ability than neutrophils in HKL, but not in PBL. For cod the phagocytic ability of B-cells were lower than for neutrophils in both HKL and PBL, but the phagocytic capacity of cod B-cells were higher than for neutrophils in both HKL and PBL. For salmon B-cells the phagocytic capacity was lower than or similar to neutrophils in HKL and PBL. The total phagocytic ability of leucocytes was different in the species studied. The highest phagocytic ability was observed in cod, showing similar values for PBL and HKL. Salmon PBL displayed about twice the phagocytic ability of cod PBL. There seemed to be some major differences between the two fish species concerning phagocytosis. In salmon, a rather large proportion of phagocytic leucocytes were phagocytic B-cells, indicating that B-cells may have an important function in particle clearance in this species. In cod, phagocytic leucocytes in HKL and PBL were mostly neutrophils, and only a small proportion of B-cells were phagocytic, supporting the more prominent role of innate immune functions in cod neutrophils.


Assuntos
Linfócitos B/fisiologia , Gadus morhua/imunologia , Neutrófilos/fisiologia , Fagocitose/imunologia , Salmo salar/imunologia , Animais , Linfócitos B/imunologia , Citometria de Fluxo , Imunofluorescência , Gadus morhua/fisiologia , Contagem de Leucócitos/veterinária , Leucócitos/imunologia , Leucócitos/fisiologia , Neutrófilos/imunologia , Fagocitose/fisiologia , Salmo salar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...